Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/tca

Thermodynamic optimization of the Ge-Sb and Ge-Sb-Sn systems

Jinming Liu, Cuiping Guo, Changrong Li, Zhenmin Du*

Department of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuanlu 30, Beijing 100083, China

ARTICLE INFO

Article history: Received 23 December 2010 Received in revised form 25 February 2011 Accepted 9 March 2011 Available online 23 March 2011

Keywords: Ge-Sb system Ge-Sb-Sn system Phase diagram CALPHAD technique Thermodynamic properties

1. Introduction

Germanium based alloys materials have gained increasing attention in recent years because of its potential application as Ge–Sb–Sn–O (GSSO) inorganic resistance materials formed by thermal lithography [1], as amorphous Ge alloy films [2] and as Ge–Sb–Te and Bi–Ge–Sb–Sn–Te phase-change recording films [3,4]. To be a good candidate, the alloy must exhibit good thermal stability and avoid phase segregation after recording or erasing cycles. Thus, to obtain the thermodynamic properties of the alloys is of importance. In this work, the Ge–Sb and the Ge–Sb–Sn systems are optimized by means of the CALculation of PHAse Diagram (CALPHAD) technique.

2. Literature information

2.1. The Ge-Sb system

The phase diagram of the Ge–Sb system is a simple eutectic system. The liquidus has been investigated by Stöhr and Klemm [5], Ruttewit and Masing [6], Zhurikin et al. [7], Malmejac et al. [8] and Alfer et al. [9]. The experimental data determined by Refs. [5–9] were generally consistent with each other. A very small solubility of Sb in the diamond was determined by Zhurikin et al. [7], Trumbore [10], Trumbore et al. [11], Akopyan and Abdullayev [12] and Glazov and Abdullyev [13]. Olesinski and Abbaschian [14] reviewed

ABSTRACT

The thermodynamic modeling and optimization of the Ge–Sb and Ge–Sb–Sn systems were critically carried out by means of the CALPHAD (CALculation of PHAse Diagram) technique. The solution phases, liquid, diamond, bct and rhombohedral, were described by the substitutional solution model. The compound SbSn was treated as the formulae (Ge,Sb,Sn)₁(Ge,Sb,Sn)₁ in the Ge–Sb–Sn system. A self-consistent thermodynamic description of the Ge–Sb–Sn system was developed. Three isothermal sections at 692, 594 and 518 K, the projection of the liquidus surfaces, and the complete reaction scheme for the Ge–Sb–Sn system in the literature were reproduced.

© 2011 Elsevier B.V. All rights reserved.

the Ge–Sb system on the basis of the information [5–13] and recommended the temperature and composition of liquid in the eutectic reaction at 865 K and 85.5 at.% Sb. And the Ge–Sb system was optimized later by Chevalier [15].

The activities of Ge and Sb in liquid at 1073, 1173 and 1273 K were measured by Kostov et al. [16]. The enthalpy of mixing of liquid at 1250 and 1273 K was determined by Predel and Stein [17] and Alfer et al. [18], respectively.

The Ge–Sb system was optimized by Wang et al. [19], regarding to the experimental information [5–18]. More recently, the Ge–Sb system was reinvestigated by Nasir et al. [20]. Comparing with the literature [5,6,14,15,19], the main difference is the temperature and composition of the invariant reaction liquid \rightarrow diamond + rhom, in which the reaction temperature is 860 and 865 K, the composition of liquid is 85.7 and 77.5 at.% Sb, and the maximal solid solubility value of Ge in the rhombohedral phase is 0 and 6.3 at.% in Refs. [19,20], respectively.

On the basis of the phase diagram reinvestigated by Nasir et al. [20] and the thermochemical data [16–18], the Ge–Sb system was re-optimized in this work.

2.2. The Ge-Sn system

The Ge–Sn system has been compiled by Olesinski and Abbaschian [21] and well optimized by Feutelais et al. [22]. The thermodynamic parameters obtained by Feutelais et al. [22] were adopted in the present work, and the calculated phase diagram was shown in Fig. 1.

^{*} Corresponding author. Tel.: +86 10 6233 3772; fax: +86 10 6233 3772. *E-mail address*: zmdu2@hotmail.com (Z. Du).

^{0040-6031/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2011.03.008

Fig. 1. Calculated Ge-Sn phase diagram by Feutelais et al. [22].

Fig. 2. Calculated Sb–Sn phase diagram by Kroupa and Vízdal [26].

2.3. The Sb-Sn system

The available experimental information for the Sb–Sn system was reviewed by Romanowska [23] and Manasijevic et al. [24]. Jŏnsson and Ågren [25] performed the first thermodynamic assessment of the Sb–Sn system. Later, the Sb–Sn system was re-optimized by Kroupa and Vízdal [26] on the basis of the new experimental data of Vassiliev et al. [27]. The thermodynamic parameters obtained by Kroupa and Vízdal [26] were adopted in the present work, and the calculated phase diagram was shown in Fig. 2.

2.4. The Ge-Sb-Sn system

Gubenko and Miller [28] investigated the partial vertical sections at Ge–(Sn+2 wt.% Sb) and Ge–(Sn+5.5 wt.% Sb). Kuznetsov et al. [29] determined the vertical section at Ge–(Sn+29.5 at.% Sb), a part of the Ge-side solidus surface (to 1 at.\% Sn and 0.06 at.\% Sb) and the partial liquidus surface (0–60 at.\% Ge). The detailed investigation of the Ge–Sb–Sn system were done by Dichi et al. [30], who determined three isothermal sections at 692, 594 and 518 K, two vertical sections at 10 at.% and 20 at.% Ge, the projection of liquidus surfaces, and presented the complete reaction scheme. The experimental data reported by Dichi et al. [30] was mainly considered in this optimization.

3. Thermodynamic models and assessment procedure

3.1. Unary phases

The Gibbs energy function $G_i^{\phi}(T) = {}^0G_i^{\phi}(T) - H_i^{\text{SER}}$ (298.15 K) for the element *i* (*i*=Ge, Sb, Sn) in the phase ϕ (ϕ =liquid, diamond, rhom, or bct) is described as follows

$$G_i^{\phi}(T) = a + bT + cT \ln T + dT^2 + eT^3 + fT^{-1} + gT^7 + hT^{-9}$$
(1)

where H_i^{SER} (298.15 K) is the molar enthalpy of the element *i* at 298.15 K in its standard element reference (SER) state, diamond for Ge, rhombohedral for Sb and bct for Sn. The Gibbs energy of the element *i*, $G_i^{\phi}(T)$, in its SER state, is denoted by GHSER_{*i*}, i.e.,

$$GHSER_i = {}^{0}G_i^{\phi}(T) - H_i^{SER} \quad (298.15 \text{ K})$$
(2)

In the present work, the Gibbs energy functions are taken from the SGTE (Scientific Group of Thermodata Europe) pure elements database compiled by Dinsdale [31] and listed in Table 1.

3.2. Solution phases

In the Ge–Sb–Sn system, there are four solution phases, liquid, diamond, rhombohedral, and bct. Their molar Gibbs energies are described by the following expression:

$$G_{\rm m}^{\phi} = x_{\rm Ge} G_{\rm Ge}^{\phi}(T) + x_{\rm Sb} G_{\rm Sb}^{\phi}(T) + x_{\rm Sn} G_{\rm Sn}^{\phi}(T) + RT(x_{\rm Ge} \ln x_{\rm Ge} + x_{\rm Sh} \ln x_{\rm Sh} + x_{\rm Sn} \ln x_{\rm Sn}) + {}^{E} G_{m}^{\phi}$$
(3)

where *R* is the gas constant; x_{Ge} , x_{Sb} and x_{Sn} are the mole fractions of the pure elements Ge, Sb and Sn, respectively; ${}^{E}G_{m}^{\phi}$ is the excess Gibbs energy, expressed by the Redlich–Kister polynomial [32].

$${}^{E}G_{m}^{\phi} = x_{\text{Ge}}x_{\text{Sb}}\sum_{j}{}^{j}L_{\text{Ge,Sb}}^{\phi}(x_{\text{Ge}} - x_{\text{Sb}})^{j} + x_{\text{Ge}}x_{\text{Sn}}\sum_{j}{}^{j}L_{\text{Ge,Sn}}^{\phi}(x_{\text{Ge}} - x_{\text{Sn}})^{j} + x_{\text{Sb}}x_{\text{Sn}}\sum_{j}{}^{j}L_{\text{Sb,Sn}}^{\phi}(x_{\text{Sb}} - x_{\text{Sn}})^{j} + x_{\text{Ge}}x_{\text{Sb}}x_{\text{Sn}}L_{\text{Ge,Sb,Sn}}^{\phi}$$
(4)

where ${}^{j}L^{\phi}_{Ge,Sb}$, ${}^{j}L^{\phi}_{Ge,Sn}$ and ${}^{j}L^{\phi}_{Sb,Sn}$ are the binary interaction parameters between elements Ge and Sb, Ge and Sn, and Sb and Sn, respectively. Its general form is

$$L^{\phi} = a + bT + cT \ln T + dT^{2} + eT^{3} + fT^{-1}$$
(5)

but in most case only the first one or two terms are used according to the temperature dependence of the experimental data. $L_{Ge,Sb,Sn}^{\phi}$ is the ternary interaction parameter expressed as:

$$L^{\phi}_{\text{Ge,Sb,Sn}} = x_{\text{Ge}}{}^{0}L^{\phi}_{\text{Ge,Sb,Sn}} + x_{\text{Sb}}{}^{1}L^{\phi}_{\text{Ge,Sb,Sn}} + x_{\text{Sn}}{}^{2}L^{\phi}_{\text{Ge,Sb,Sn}}$$
(6)

where ${}^{j}L^{\phi}_{Ge,Sb,Sn} = a_j + b_jT$ (*j* = 0, 1, 2). a_j and b_j are the parameters to be optimized in this work.

Table 1 Thermodynamic parameters of the Ge–Sb–Sn system.^a

Phase	Temperature (K)	Thermodynamic parameters	Reference
	298.15-900	$GHSER_{Ge} = -9486.153 + 165.635573T - 29.5337682T \ln(T) + 5.568297 \times 10^{-3}T^{2} - 1.513694 \times 10^{-6}T^{3} + 163298T^{-1}T^{2} - 1.513694 \times 10^{-6}T^{3} + 100000000000000000000000000000000000$	[31]
	900-1211.40	$GHSER_{Ce} = -5689.239 + 102.86087T - 19.8536239T\ln(T) - 3.672527 \times 10^{-3}T^2$	
	1211.40-3200	$GHSER_{Ce} = -9548.204 + 156.708024T - 27.6144T\ln(T) - 8.59809 \times 10^{28}T^{-9}$	
	298.15-903.78	$GHSER_{Sb} = -9242.858 + 156.154689T - 30.5130752T\ln(T) + 7.748768 \times 10^{-3}T^2 - 3.003415 \times 10^{-6}T^3 + 100625T^{-1}T^3 + 100675T^2 + 100575T^3 + 100675T^2 + 100575T^2 + 1005755T^2 + 100575T^2 + 100575T^2 + $	[31]
	903.78-2000	$GHSER_{Sb} = -11738.83 + 169.485872T - 31.38T \ln(T) + 1616.8491024T^{-9}$	
	100–250	$GHSER_{Sn} = -7958.517 + 122.765451T - 25.8587\ln(T) + 0.51185 \times 10^{-3}T^2 - 3.192767 \times 10^{-6}T^3 + 18440T^{-1}$	[31]
	250-505.08	$GHSER_{Sn} = -5855.135 + 65.443315T - 15.961T ln(T) - 18.8702 \times 10^{-3}T^{2} + 3.121167 \times 10^{-6}T^{3} - 61960T^{-1}$	
	505.08-800	$GHSeR_{Sn} = +2524.724 + 4.005269T - 8.25904867 \ln(T) - 16.814429 \times 10^{-3}T^{2} + 2.623131 \times 10^{-5}T^{3} - 1081244T^{-1} - 1.2307 \times 10^{25}T^{-9} \times 10^{-5}T^{-9} \times 10^{-5}$	
	800-3000	$GHSER_{sn} = -8256.959 + 138.99688T - 28.4512T \ln(T) - 1.2307 \times 10^{25}T^{-9}$	
Liquid		Model: (Ge, Sb,Sn) ₁	10.13
	298.14-900	G(liquid,	[31]
		$Ge) = +27655.337 + 134.94853T - 29.5337682T \ln(T) + 0.005568297T^2 - 1.513694 \times 10^{-6}T^3 + 163298T^{-1} + 8.56632 \times 10^{-2}T^7 + 10^{-6}T^3 + 10^$	
	900-1211.4	$G(\text{liquid}, \text{Ge}) = + 31452.25 + 72.173826T - 19.8536239T\ln(T) - 0.003672527T^2 + 8.56632 \times 10^{-21}T^7$	
	1211.40-3200	$G(\text{liquid}, \text{Ge}) = +27243.473 + 126.324186T - 27.6144T \ln(T)$	10.13
	298.14-903.78		[31]
		$Sb) = +105/9.4/+134.2315257 - 30.51307527 \ln(7) + 0.007/48/687^2 - 3.003415 \times 10^{-6}7^3 + 1006257^{-1} - 1.74847 \times 10^{-20}7^3$	
	903.78-2000	$G(\text{liquid}, \text{Sb}) = +81/5.359 + 14/.4559867 - 31.387 \ln(7)$	10.13
	100-250		[31]
		Sn = -855.425 + 108.67/6847 - 25.8587 ln(7) + 5.1185 × 10 ⁻⁴ 7 ² - 3.192767 × 10 ⁻⁶ 7 ³ + 184407 ⁻¹ + 1.47031 × 10 ⁻¹⁶ 77	
	250-505.08		
	505,000	$s_{n} = +124/957 + 51.3555481 - 15.9617 \ln(T) - 0.018887/0212 + 3.121167 \times 10^{-6}T^{-1} - 619601^{-1} + 1.47/031 \times 10^{-16}T^{-1}$	
	505-800	$G(11quid, sn) = + 9496.31 - 9.8091141 - 8.259048611n(1) - 0.01681442912 + 2.623131 \times 10^{-6}1^{2} - 10812441^{-4}$	
	800-3000	G(liquid, Sn) = -1285.372 + 125.1824987 - 28.45127 ln(7)	
		${}^{o}L_{\text{gc,sb}}^{\text{ind.}} = +3289.7 - 0.5212T$	This work
		${}^{0}L_{\text{Ge},\text{Sp}}^{\text{liq.}} = +2738.5 - 0.7278T$	[22]
		$^{1}L_{cas}^{liq.} = -472.4$	[22]
		$V_{L_{2}}^{(m_{2})} = -5695.1 - 1.7090T$	[26]
		50.5n	[26]
		$z_{\rm SbSn} = +762.0$	[20]
		$L_{\rm 5b,5n} = +1840.9$	[26]
		$O_{L_{ccb}Sn}^{\text{ind.}} = -12521.6 + 13.0000T$	This work
		${}^{1}L_{\text{Ge}}^{\text{liq.}} = -37997.8 + 42.5440T$	This work
		${}^{2}L_{ii}^{\text{liq.}} = +31152.9 - 8.0000T$	This work
Diamond		Model: (Ge. Sb.Sn)	
	298.14-3200	$G(\text{diamond}, \text{Ge}) = + \text{GHSER}_{Ge}$	[31]
		$G(\text{diamond. Sb}) = + \text{GHSER}_{\text{sb}} + 5000.0$	This work
	100-298.14	$G(\text{diamond}, \text{Sn}) = -9579.608 + 114.007785T - 22.972T \ln(T) - 0.00813975T^2 + 2.7288 \times 10^{-6}T^3 + 25615T^{-1}$	[31]
	298.14-800	$G(\text{diamond}, \text{Sn}) = -9063.001 + 104.84654T - 21.5750771Tn}(T) - 0.008575282T^2 + 1.784447 \times 10^{-6}T^3 - 2544T^{-1}$	
	800-3000	$G(\text{diamond}, \text{Sn}) = -10909.351 + 147.3965357 - 28.45127 \ln(7)$	
		${}^{0}L_{\text{descend}}^{\text{instant}} = +79210.1 - 19.8000T$	[19]
		$^{\text{uc,so}}_{L \text{diamond}} = +14471.1 + 10.6195T$	[22]
		$U_{lamond}^{\text{te,sn}} = 0.0$	This work
		$-Ce,Sb,Sn$ $-\cdots$	This work
		$2_{\text{GeSbSn}} = 0.0$	This work
		$L_{\text{Ge,Sb,Sn}} = 0.0$	THIS WOLK

rhom		Model: (Ge, Sb,Sn) ₁	
	298.14-900	$G(\text{rhom, Ge}) = +20313.847 + 149.135573T - 29.5337682T \ln(T) + 0.005568297T^2 - 1.513694 \times 10^{-6}T^3 + 163298T^{-1}$	[31]
	900-1211.4	$G(\text{rhom, Ge}) = +24110.761 + 86.36087T - 19.85362397 \ln(T) - 0.003672527T^2$	
	1211.4-3000	$G(\text{rhom, Ge}) = +20251.796 + 140.208024T - 27.6144T \ln(T) - 8.59809 \times 10^{28}T^{-9}$	
	298.14-2000	$G(\text{rhom}, \text{Sb}) = + \text{GHSER}_{\text{Sb}}$	[31]
	100-250	$G(\text{rhom}, \text{Sn}) = -5923.517 + 122.765451T - 25.858T\ln(T) + 5.1185 \times 10^{-4}T^2 - 3.192767 \times 10^{-6}T^3 + 18440T^{-1}$	[31]
	250-505.08	$G(\text{rhom}, \text{Sn}) = -3820.135 + 65.443315T - 15.961T\ln(T) - 0.0188702T^2 + 3.121167 \times 10^{-6}T^3 - 61960T^{-1}$	
	505.08-800	G(rhom,	
		$\text{Sn} = + 4559.724 + 4.0052697 - 8.25904867 \ln(7) - 0.0168144297^2 + 2.623131 \times 10^{-6}7^3 - 10812447^{-1} - 1.2307 \times 10^{25}7^{-9}$	
	800-3000	$G(\text{rhom}, \text{Sn}) = -6221.959 + 138.99688T - 28.4512T\ln(T) - 1.2307 \times 10^{25}T^{-9}$	
		${}^{0}L_{\text{form}}^{\text{hom}} = +10695.0 - 6.5572T$	This work
		$^{0}U^{\text{thom}}_{\text{thom}} = +4000.0 - 5.7323T$	[26]
		5 Sb.sn \rightarrow 130429 2	This work
		$L_{\rm CeSbSn} = +50425.1$	This work
		$L_{ceSbSn} = +51420.1$	THIS WOLK
		$L_{\rm Ge,Sb,Sn}^{r} = +31/48.8$	This work
bct		Model: (Ge, Sb,Sn) ₁	
	298.14-900	$G(\text{bct, Ge}) = +19313.847 + 149.1355737 - 29.53376827\ln(7) + 0.0055682977^2 - 1.513694 \times 10^{-6}7^3 + 1632987^{-1}$	[31]
	900-1211.4	$G(bct, Ge) = +23110.761 + 86.36087T - 19.8536239T ln(T) - 0.003672527T^2$	
	1211.4-3000	$G(bct, Ge) = + 19251.796 + 140.208024T - 27.6144T \ln(T) - 8.59809 \times 10^{28}T^{-9}$	
	298.14-903.78	$G(\text{bct}, \text{Sb}) = +3757.142 + 148.154689T - 30.5130752T\ln(T) + 0.007748768T^2 - 3.003415 \times 10^{-6}T^3 + 100625T^{-1}$	[31]
	903.78-2000	$G(\text{bct}, \text{Sb}) = +1261.17 + 161.485872T - 31.38T\ln(T) + 1.616849 \times 10^{27}T^{-9}$	
	100-3000	$G(bct, Sn) = + GHSER_{Sn}$	[31]
		${}^{0}L_{\rm 5bS,n}^{\rm bct} = +3659.1 - 21.3800T$	[26]
		${}^{1}L_{\rm bSn}^{\rm bcn} = -21860.5 + 44.4870T$	[26]
		${}^{0}L_{\text{oct}}^{\text{bct}} = +33324.0$	This work
		${}^{1}L^{bet}$ = +432242.3	This work
		$\frac{1}{2} \frac{1}{2} \frac{1}$	This work
ShSn		$C_{c,Sb,Sn} = (C_{c,Sb,Sn})$	
55511		$C_{\text{SDS}}^{\text{SDS}} = \angle C_{\text{SDS}}^{\text{SDS}} + \angle C_{\text{SDS}}^{\text{SDS}} = 6035.7 - 2.4780T$	[26]
		$G_{5,5,n}^{\text{Const}} \rightarrow GHDER_{5,p} + GHDER_{5,n}^{\text{Const}} = 0.035, 7 = 2.47801$	[26]
		$G_{51,55}^{(n)} = \pm 0.0126_{51}^{(n)} = 0.003.7 = 2.47001$	[20]
		$G_{\text{Sb},\text{Sb}}^{\text{Sb}} = \pm 2GHSER_{\text{Sb}} + 0227.3$	[20]
		$G_{SPSn} = +2GDERSn + 7405.7$	[20] This work
		$G_{e^{+}Ce^{-}}^{Ce^{+}Ce^{-}} + 2GDEK_{Ce}^{-} + 11000.0$	This work
		$G_{\text{SprGe}}^{\text{res}} = +G\text{SERSp} + G\text{SERGe} + 51102.6$	This work
		$G_{eeSn}^{\text{chermitic}} = + GH3EK_{Sn} + GH3EK_{Ce} + 31102.8$	This work
		$G_{3}^{+}G_{2}^{-} = +GJSEK_{Sb} + GJSEK_{G} + 53102.8$	THIS WORK
		$G_{\text{ders}}^{\text{ders}} = + \text{GHSEK}_{\text{Sb}} + \text{GHSEK}_{\text{ce}} + 53162.8$	This work
		555 $= -4300.5 + 6.63801$	[26]
		$U_{\text{SbSb,b}}^{\text{SbSb}} = -4300.5 + 6.6380T$	[26]
		${}^{0}L_{\text{SiSbs}}^{\text{SbSn}} = -1600.7 + 6.5990T$	[26]
		${}^{0}L_{\rm s, s, tr, c_{\rm s}}^{\rm SbSn} = -1600.7 + 6.5990T$	[26]
		${}^{0}L_{\rm Sb5n}^{\rm Sb5n} = -15029.2$	This work
		$u_{LSSSn}^{\text{objects,in}} = -15029.2$	This work
		$v_{l}^{\text{uesniss}} = -15023.3$	This work
		$S_{n:GeSb} = -15023.3$	This work
Sh-Sn-		$\gamma_{ce,Sb;Sn} = 100255$	THIS WOLK
3023113		$r_{\rm D} = 1.2 {\rm CEFP}_{-1} + 2 {\rm CHSEP}_{-1} = 222.6 - 21.0220 {\rm T}_{-1}$	[26]
		$\sigma_{Sb,Sn}^{+} = +2 \sigma_{1} \sigma_{SL} \sigma_{Sn}^{+} - 2 \sigma_{SL} \sigma_{Sn}^{-} - 2 \sigma_{SL} \sigma_{SL}^{+} \sigma_{SL}^{+}$	[20]

^a In J mol⁻¹ of the formula units.

41

3.3. Intermetallic compounds

In the Ge–Sb–Sn system, the compound SbSn is treated as the formulae $(Ge,Sb,Sn)_1(Ge,Sb,Sn)_1$. The Gibbs energy per mole of formula unit SbSn is expressed as follows:

thermodynamic optimization of the Ge–Sb and the Ge–Sb–Sn systems were carefully performed in this work.

The thermodynamic parameters for the Ge–Sb system are reoptimized on the basis of the information [5–20]. The experimental

$$G_{m}^{SbSn} = y_{Sb}'y_{Ge}'G_{Sb:Ge}^{SbSn} + y_{Sb}'y_{Sb}'G_{Sb:Sb}^{SbSn} + y_{Sb}'y_{Sn}'G_{Sb:Sn}^{SbSn} + y_{Sn}'y_{Ge}'G_{Sn:Ge}^{SbSn} + y_{Sn}'y_{Sn}'G_{Sn:Sn}^{SbSn} + y_{Sn}'y_{Sn}'G_{Sn:Sn}^{SbSn} + y_{Ge}'y_{Sn}'G_{Ge:Sn}^{SbSn} + y_{Ge}'y_{Sn}'G_{Ge:Sn}^{SbSn} + y_{Ge}'y_{Ge}'G_{Ge:Sn}^{SbSn} + y_{Ge}'g_{Ge}'G_{Ge:Sn}^{SbSn} + y_{Ge}'g_{Ge}'g_{Ge}'G_{Ge:Sn}^{SbSn} + y_{Ge}'g_{Ge}'$$

$$+y'_{Ge}\left[y''_{Ge}y''_{Sb}\sum_{j}^{j}L^{SbSn}_{Ge;Ge,Sb}(y''_{Ge} - y'_{Sb})^{j} + y''_{Ge}y''_{Sn}\sum_{j}^{j}L^{SbSn}_{Ge;Ge,Sn}(y''_{Ge} - y''_{Sn})^{j} + y''_{Sb}y''_{Sn}\sum_{j}^{j}L^{SbSn}_{Ge;Sb,Sn}(y''_{Sb} - y''_{Sn})^{j} + y''_{Ge}y''_{Sb}y''_{Sn}L^{SbSn}_{Ge;Ge,Sh,Sn}\right] + y'_{Sb}\left[y''_{Ge}y''_{Sb}\sum_{j}^{j}L^{SbSn}_{Sb:Ge,Sb}(y''_{Ge} - y''_{Sb})^{j} + y''_{Ge}y''_{Sn}\sum_{j}^{j}L^{SbSn}_{Sb:Ge,Sn}(y''_{Ge} - y''_{Sn})^{j} + y''_{Sb}y''_{Sn}\sum_{j}^{j}L^{SbSn}_{Sb:Sh,Sn}(y''_{Sb} - y''_{Sn})^{j} + y''_{Ge}y''_{Sb}y''_{Sn}L^{SbSn}_{Sb:Ge,Sh,Sn}\right] + y'_{Sb}\left[y''_{Ge}y''_{Sb}\sum_{j}^{j}L^{SbSn}_{Sb:Ge,Sb}(y''_{Ge} - y''_{Sb})^{j} + y''_{Ge}y''_{Sn}\sum_{j}^{j}L^{SbSn}_{Sb:Ge,Sn}(y''_{Ge} - y''_{Sn})^{j} + y''_{Sb}y'_{Sn}\sum_{j}^{j}L^{SbSn}_{Sb:Sh,Sn}(y''_{Sb} - y''_{Sn})^{j} + y''_{Ge}y''_{Sb}y''_{Sn}L^{SbSn}_{Sh:Ge,Sh,Sn}\right]$$
(7)
$$+y'_{Ge}\left[y'_{Ge}y'_{Sb}\sum_{j}L^{SbSn}_{Ge,Sb:Ge}(y'_{Ge} - y'_{Sb})^{j} + y'_{Ge}y'_{Sn}\sum_{j}L^{SbSn}_{Ge,Sn:Ge}(y'_{Ge} - y'_{Sn})^{j} + y'_{Sb}y'_{Sn}\sum_{j}L^{SbSn}_{Sh:Sh,Sn}(y'_{Sb} - y'_{Sn})^{j} + y'_{Ge}y'_{Sb}y'_{Sn}J^{L}^{SbSn}_{Ge,Sh,Sn}Ge\right] + y''_{Sb}\left[y'_{Ge}y'_{Sb}\sum_{j}L^{SbSn}_{Ge,Sh:Sh}(y'_{Ge} - y'_{Sh})^{j} + y'_{Ge}y'_{Sh}\sum_{j}L^{SbSn}_{Ge,Sh,Sn:Ge}(y'_{Ge} - y'_{Sh})^{j} + y'_{Ge}y'_{Sb}y'_{Sn}J^{L}^{SbSn}_{Ge,Sh,Sn:Ge}\right] + y''_{Sb}\left[y'_{Ge}y'_{Sb}\sum_{j}L^{SbSn}_{Ge,Sh:Sh}(y'_{Ge} - y'_{Sh})^{j} + y'_{Ge}y'_{Sh}\sum_{j}L^{SbSn}_{Ge,Sh,Sn:Sh}(y'_{Sb} - y'_{Sn})^{j} + y'_{Ge}y'_{Sb}y'_{Sh}J^{L}^{SbSn}_{Ge,Sh,Sn:Sh}\right] + y''_{Sb}\left[y'_{Ge}y'_{Sb}\sum_{j}L^{SbSn}_{Ge,Sh:Sh}(y'_{Ge} - y'_{Sh})^{j} + y'_{Ge}y'_{Sh}y'_{Sn}\sum_{j}L^{SbSn}_{Sh,Sh:Sh}(y'_{Sb} - y'_{Sn})^{j} + y'_{Ge}y'_{Sb}y'_{Sh}J^{L}^{SbSn}_{Ge,Sh,Sh:Sh}\right] + y''_{Sh}\left[y'_{Ge}y'_{Sb}\sum_{j}L^{SbSn}_{Ge,Sh,Sh}(y'_{Ge} - y'_{Sh})^{j} + y'_{Ge}y'_{Sh}y'_{Sh}J^{L}^{SbSn}_{Ge,Sh,Sh:Sh}\right] + y''_{Sh}y'_{Sh}\sum_{j}L^{SbSn}_{Sh,Sh:Sh}(y'_{Sb} - y'_{Sh})^{j} + y'_{Ge}y'_{Sh}y'_{Sh}J^{L}^{SbSn}_{Sh,Sh:Sh}Sh'_{Sh}Sh'_{Sh}Sh'_{Sh,Sh,Sh}Sh'_{Sh}Sh'_{Sh,Sh,Sh}Sh'_{Sh}Sh'_{Sh,Sh,Sh,Sh}Sh'_{Sh}Sh'_{Sh,Sh,Sh,Sh}Sh'_{Sh,Sh,Sh,Sh}Sh'_{Sh}Sh'_{Sh,Sh,Sh,S$$

where y'_{*} and y''_{*} are the site fraction of Ge, Sb or Sn on the first and second sublattices, respectively; the parameter $G_{*:*}^{SbSn}$ represents the Gibbs energies of the compound SbSn when the first and second sublattices are occupied by only one element Ge, Sb or Sn, respectively, which are relative to the enthalpies of diamond for Ge, rhom for Sb, and bct for Sn in their SER state; ${}^{j}L_{Ge,Sh:*}^{SbSn}$, ${}^{j}L_{Ge,Sn:*}^{SbSn}$, ${}^{j}L_{Sb,Sn}^{SbSn}$, ${}^{j}L_{*:Ge,Sh}^{SbSn}$, are the *j*th interaction parameter between elements Ge and Sb, Ge and Sn, and Sb and Sn on the first and second sublattice, respectively; ${}^{j}L_{Ge,Sh,N:*}^{SbSn}$ and ${}^{j}L_{*:Ge,Sh,N:*}^{SbSn}$ represents the *j*th interaction parameter among elements Ge, Sb and Sn on the first and second sublattice, respectively.

In the ternary Ge–Sb–Sn system, the solid solubility of Ge in the binary compound Sb_2Sn_3 is very small and closed to 0. In the present work, the model of Sb_2Sn_3 is consistent with that in the Sb–Sn system [26]. The Gibbs energy per mole of formula unit Sb_2Sn_3 is expressed as following:

$$G_{\rm m}^{\rm Sb_2Sn_3} = 2\rm GHSER_{\rm Sb} + 3\rm GHSER_{\rm Sn} + \Delta G_{\rm f}^{\rm Sb_2Sn_3}$$

$$\tag{8}$$

where $\Delta G_{\rm f}^{\rm Sb_2 Sn_3}$ is the Gibbs energy of formation per mole of formula unit Sb₂Sn₃. Owing to a lack of experimental measurements, it is assumed that the Neumann–Kopp rule applies to the heat capacity, i.e. $\Delta C_P = 0$. Thus, $\Delta G_{\rm f}^{\rm Sb_2 Sn_3}$ can be given by the following expression:

$$\Delta G_{\rm f}^{\rm Sb_2 Sn_3} = a + bT \tag{9}$$

where the parameters *a* and *b* were taken from the assessed results in Ref. [26].

3.4. Assessment procedure

A general rule for selection of the adjustable parameters is that only those coefficients determined by the experimental values should be adjusted [33]. The assessment is carried out by means of the optimization module PARROT of the thermodynamic software Thermo-Calc [34], which can deal with various kinds of experimental information.

A careful examination of thermodynamic descriptions of the Ge-Sn [22] and the Sb-Sn [26] systems is made. The results reported by Nasir et al. [20] are given more weight during the optimizing procedure. For liquid and rhom, the interaction parameters ${}^{0}L_{Ge,Sh}^{liq}$, ${}^{1}L_{Ge,Sb}^{liq}$ and ${}^{0}L_{Ge,Sh}^{rhom}$ in Eq. (5) can be reliably obtained from the experimental data. The interaction parameter ${}^{0}L_{Ge,Sh}^{diamond}$ is taken from the assessed data [19].

The thermodynamic parameters for the Ge–Sb–Sn system are optimized on the basis of the experimental information available in the literature [28,30]. The experimental results reported by Dichi et al. [30] are given more weight during the process of optimization.

The thermodynamic parameters of liquid, diamond, rhom and bct in the Ge–Sb–Sn system, are obtained by a combination of the corresponding Gibbs energy functions from the assessments of the binary systems using Muggianu interpolation of binary excess terms [35]. The interaction parameters ${}^{0}L_{Ge,Sn}^{liq}$, ${}^{1}L_{Ge,Sn}^{liq}$, ${}^{0}L_{Sb,Sn}^{liq}$, ${}^{1}L_{Sb,Sn}^{liq}$, ${}^{2}L_{Sb,Sn}^{liq}$, ${}^{0}L_{Sb,Sn}^{rhom}$, ${}^{0}L_{Sb,Sn}^{bct}$ and ${}^{1}L_{Sb,Sn}^{bct}$ are taken from the two binary systems assessed by Feutelais et al. [22] and Kroupa and Vízdal [26]. The ternary parameters ${}^{0}L_{Ge,Sb,Sn}^{liq}$, ${}^{1}L_{Ge,Sb,Sn}^{liq}$, ${}^{2}L_{Ge,Sb,Sn}^{liq}$, ${}^{2}L_{Ge,Sb,Sn}^{liq}$, ${}^{2}L_{Ge,Sb,Sn}^{chom}$, ${}^{1}L_{Ge,Sb,Sn}^{chom}$, ${}^{2}L_{Ge,Sb,Sn}^{chom}$, ${}^{1}L_{Ge,Sb,Sn}^{chom}$, and ${}^{2}L_{Ge,Sb,Sn}^{bct}$, are optimized according to the experimental data [28,30].

For the compounds in the ternary Ge–Sb–Sn system, the parameters $G_{\text{SbSn}}^{\text{SbSn}}$, $O_{\text{SbSn}}^{\text{SbSn}}$, $G_{\text{SbSn}}^{\text{SbSn}}$, $G_{\text{SbSn}}^{\text{SbSn}}$, $G_{\text{SbSn}}^{\text{SbSn}}$, $G_{\text{SbSn}}^{\text{SbSn}}$, $G_{\text{SbSn}}^{\text{SbSn}}$, $G_{\text{SbSn}}^{\text{SbSn}}$, $O_{\text{SbSn}}^{\text{SbSn}}$, $O_{\text{SbSn}}^{\text{SbSn}}$, $O_{\text{SbSn}}^{\text{SbSn}}$, $O_{\text{SbSn}}^{\text{SbSn}}$, and $O_{\text{SbSn}}^{\text{SbSn}}$ are optimized according to the experimental data [30]. For the reason of crystallographic symmetry, the number of the parameters is reduced by the following assumption:

$$G_{\text{CerSh}}^{\text{SbSn}} = G_{\text{ShrGe}}^{\text{SbSn}} \tag{10}$$

$$G_{\text{Ge:Sn}}^{\text{SbSn}} = G_{\text{Sn:Ge}}^{\text{SbSn}} \tag{11}$$

$${}^{0}L_{\text{Sb:Ge,Sn}}^{\text{SbSn}} = {}^{0}L_{\text{Ge,Sn:Sb}}^{\text{SbSn}}$$
(12)

$${}^{0}L^{\text{SbSn}}_{\text{Sn:Ge,Sb}} = {}^{0}L^{\text{SbSn}}_{\text{Ge,Sb:Sn}}$$
(13)

Table 2

Invariant reactions of the Ge-Sb system.

Reaction	Present work				Experimental data				
	T (K)	<i>x</i> (Sb)			<i>T</i> (K)	<i>x</i> (Sb)			Ref.
Liq. \rightarrow diamond + rhom	865	0.8249	0.0001	0.9375	859	0.832	-	_	[5]
					865	0.865	0.000	1.000	[6]
					865	0.855	0.000	1.000	[14]
					859	0.838	0.000	1.000	[15]
					860	0.857	0.0001	1.000	[19]
					865	0.775	0.000	0.937	[20]

Table 3

Invariant reactions of the Ge-Sb-Sn system.

Reaction	Present work					
	Туре	T (K)	Composition in liquid			<i>T</i> (K)
	•••		<i>x</i> (Ge)	<i>x</i> (Sb)	<i>x</i> (Sn)	
Liq. + rhom → SbSn + diamond	U ₁	692	0.0219	0.4898	0.4883	692
Liq. + SbSn \rightarrow Sb ₂ Sn ₃ + diamond	U ₂	594	0.0057	0.2054	0.7889	594
Liq. + Sb ₂ Sn ₃ \rightarrow bct + diamond	U3	518	0.0821	0.0089	0.9090	518
$Sb_2Sn_3 \rightarrow bct + diamond + SbSn$	E	516	-	-	-	516

4. Results and calculations

4.1. The Ge-Sn and Sb-Sn systems

The Ge–Sn and Sb–Sn systems were assessed by Feutelais et al. [22] and Kroupa and Vízdal [26], respectively. Their thermodynamic descriptions are accepted in the present work and listed in Table 1.

4.2. The Ge-Sb system

The calculated Ge–Sb phase diagram using the thermodynamic parameters optimized in this work and comparison with the experimental data [5–9,20] is shown in Fig. 3.

Fig. 4 presents the calculated enthalpy of mixing of liquid at 1273 K in comparison with experimental data [17,18]. The experimental results reported by Predel and Stein [17] and Alfer et al. [18] are given the same weight during the optimizing procedure. To well reproduce the activities of Ge and Sb in liquid reported by Kostov et al. [16], the calculated results are

Fig. 3. Calculated Ge–Sb phase diagram by the present thermodynamic description with experimental data measured by Stöhr and Klemm [5], Ruttewit and Masing [6], Zhurkin et al. [7], Malmejac et al. [8], Alfer et al. [9] and Nasir et al. [20].

in agreement with the experimental data [17], as shown in Fig. 4.

The calculated activities of Ge and Sb in liquid at 1073, 1173 and 1273 K in comparison with the measured data [16] are shown in Fig. 5a–c. Satisfactory agreement is obtained between the calculated results and the experimental data [16]. The thermodynamic parameters of the Ge–Sb system obtained in the present work are listed in Table 1. The calculated invariant reaction in the Ge–Sb system is listed in Table 2. The experimental invariant reaction temperature and compositions of individual phases [20] are well reproduced.

4.3. The Ge-Sb-Sn system

Combining the Ge–Sb system assessed in the present work with the Ge–Sn [22] and Sb–Sn [26] systems optimized previously, the Ge–Sb–Sn system has been optimized on the basis of the available experimental information [28,30].

Fig. 4. Calculated enthalpies of mixing of liquid at 1273 K in the Ge–Sb system and comparison with the experimental data [17,18]. The reference states are liquid for Ge and Sb.

Fig. 5. (a) Calculated activities of Ge and Sb in liquid at 1073 K in the Ge–Sb system and comparison with the experimental data [16]. The reference states are liquid for Ge and Sb. (b) Calculated activities of Ge and Sb in liquid at 1173 K in the Ge–Sb system and comparison with the experimental data [16]. The reference states are liquid for Ge and Sb. (c) Calculated activities of Ge and Sb in liquid at 1273 K in the Ge–Sb system and comparison with the experimental data [16]. The reference states are liquid for Ge and Sb. (c) Calculated activities of Ge and Sb in liquid at 1273 K in the Ge–Sb system and comparison with the experimental data [16]. The reference states are liquid for Ge and Sb.

Fig. 6. Calculated isothermal section of the Ge–Sb–Sn system at 692 K by the present thermodynamic description and comparison with the experimental data [30].

Fig. 7. Calculated isothermal section of the Ge–Sb–Sn system at 594 K by the present thermodynamic description and comparison with the experimental data [30].

Fig. 8. Calculated isothermal section of the Ge–Sb–Sn system at 518 K by the present thermodynamic description and comparison with the experimental data [30].

Fig. 9. Calculated vertical section of the Ge–Sb–Sn system at 10at.% Ge by the present description and comparison with the experimental data [30].

Fig. 10. Calculated vertical section of the Ge–Sb–Sn system at 20 at.% Ge by the present description and comparison with the experimental data [30].

Fig. 11. Calculated vertical section of the Ge–Sb–Sn system at Ge–(Sn + 5.5 wt.% Sb) by the present description and comparison with the experimental data [28,30].

Fig. 12. Calculated vertical section of the Ge–Sb–Sn system at Ge–(Sn+2 wt.%Sb) by the present description and comparison with the experimental data [28,30].

Fig. 13. (a) Calculated projection of the liquidus surfaces in the Ge–Sb–Sn system using the present thermodynamic description. (b) Enlarged section of (a).

Fig. 14. Calculated complete reaction scheme of the Ge–Sb–Sn system.

The thermodynamic description of the Ge–Sb–Sn system obtained in the present work is shown in Table 1.

The calculated invariant equilibria in the Ge–Sb–Sn system are listed in Table 3. As shown in the table, a very good agreement is obtained between the calculated results and the experimental data [30].

Figs. 6–8 are the calculated isothermal sections at 692, 594 and 518 K in the Ge–Sb–Sn system, respectively. Figs. 9 and 10 are the calculated vertical sections at 10 and 20 at.% Ge using the present thermodynamic description in comparison with experimental data [30] in the Ge–Sb–Sn system. Satisfactory agreements are obtained between the calculated results and the experimental data [30] in Figs. 6–9. The discrepancy in liquidus in Fig. 10 between the calculated results and experimental data [30] was caused by the optimized results in the binary Ge–Sb and Ge–Sn [22] systems.

Figs. 11 and 12 are the calculated vertical sections at Ge-(Sn+5.5 wt. % Sb) and Ge-(Sn+2 wt. % Sb) using the present thermodynamic description in the Ge–Sb–Sn system with experimental data [28,30]. The experimental results reported by Dichi et al. [30] are given more weight during the optimizing procedure. The calculated results are some deviations with experiments [28], but satisfactory agreement is obtained between the calculations and the experiments [30].

Fig. 13a and b is the calculated projection of the liquidus surfaces of the Ge–Sb–Sn system according by the present thermodynamic description. Fig. 14 shows the predicted entire reaction scheme for the Ge–Sb–Sn system. The calculated projection of liquidus surfaces and the reaction scheme in the Ge–Sb–Sn system are consistent with the experimental results [30].

5. Conclusions

The thermodynamic parameters in the Ge–Sb binary system and the Ge–Sb–Sn ternary system are critically evaluated from the experimental information available in the literature. A set of selfconsistent thermodynamic parameters describing the Gibbs energy of each individual phase as a function of composition and temperature is derived. The projection of the liquidus surfaces and the entire reaction scheme for the Ge–Sb–Sn system are well reproduced.

Acknowledgement

This work was supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 50801004 and 50971027).

References

- C.P. Liu, C.C. Hsu, T.R. Jeng, J.P. Chen, Enhancing nanoscale patterning on Ge–Sb–Sn–O inorganic resist film by introducing oxygen during blue laserinduced thermal lithography, J. Alloys Compd. 488 (2009) 190–194.
- [2] H.S. Randhawa, L.K. Malhotra, K.L. Chopra, Formation and stability criteria for amorphous Ge alloy films, J. Non-Cryst. Solids 29 (1978) 311–321.
- [3] S.-S. Lin, Doped Ge–Sb–Te phase-change materials for reversible phase-change optical recording, Ceram. Int. 33 (2007) 1161–1164.
- [4] S.-S. Lin, Bi-Ge-Sb-Sn-Te films for reversible phase-change optical recording, Ceram. Int. 33 (2007) 1627–1630.
- [5] H. Stöhr, W. Klemm, On binary alloys with germanium as a base Metal. II, Z. Anorg. Chem. 224 (1940) 205–223.
- [6] K. Ruttewit, G. Masing, On the alloys of germanium with bismuth, antimony, iron and nickel, Z. Metallkd. 32 (1940) 52–61.
- [7] B.G. Zhurkin, V.S. Zemskov, D.A. Petrov, A.D. Suchkov, Izv. Askad. Nauk. SSSR Otd. Tekh. Nauk Met. Topl. 5 (1959) 86–90 (cited from Ref. [19]).

- [8] Y. Malmejac, P. Desre, E. Bonnier, Contribution to the studies of the ternary phase diagram Ge-Si-Sb, Mem. Sci. Rev. Metall. 69 (1972) 565–577.
- [9] S.A. Alfer, L.A. Mechkovskij, A.A. Vecher, Study germanium-indium-antimony system liquidus surface differential thermal anlysis using simplex-lattice experiment planning, Z. Fiz. Khim. 57 (1983) 1292–1293.
- [10] F.A. Trumbore, Solid solubilities of impurity elements in germanium and silicon, Bell. Syst. Technol. J. 39 (1960) 205–233.
- [11] F.A. Trumbore, W.G. Spitzer, R.A. Logan, C.L. Luke, Solid solubilities of antimony, arsenic and bismuth in germanium from a saturation diffusion experiment, J. Electrochem. Soc. 109 (1962) 734–738.
- [12] R.A. Akopyan, A.A. Abdullayev, Investigation of the decomposition of aluminum and antimony solid solutions in germanium, Izv. Askad. Nauk SSSR Neorg. Mater. 14 (1978) 1827–1833.
- [13] V.M. Glazov, A.A. Abdullyev, Investigation of the relation between charge carrier concentration and maximum solubility of aluminum and antimony in germanium, Izv. Askad. Nauk. SSSR Neorg. Mater. 14 (1978) 1823–1826.
- [14] R.W. Olesinski, G.J. Abbaschian, The Ge–Sb system, Bull. Alloy Phase Diagrams 7 (1986) 219–222.
- [15] P.Y. Chevalier, A thermodynamic evaluation of the Ge-In, Ge-Pb, Ge-Sb, Ge-Tl and Ge-Zn systems, Thermochim. Acta 155 (1989) 227-240.
- [16] A. Kostov, D. Živković, Ž. Živković, Thermodynamic analysis of binary systems Ge-Ga and Ge-Sb, Thermochim. Acta 338 (1999) 35-43.
- [17] V.B. Predel, D.W. Stein, Thermodynamic investigation of the systems germanium-zinc, germanium-indium and germanium-antimony, Z. Metallkd. 61 (1970) 909–914.
- [18] S.A. Alfer, A.A. Vecher, O.A. Egorov, Enthalpy of mixing in the germanium-antimony-tellurium system, Russ. J. Phys. Chem. 55 (1981) 910-912.
- [19] J. Wang, C. Leinenbach, M. Roth, Thermodynamic description of the Au–Ge–Sb ternary system, J. Alloys Compd. 485 (2009) 577–582.
- [20] N. Nasir, A. Grytsiv, P. Rogl, A. Saccone, G. Giester, Phase equilibria in systems Ce–M–Sb (M = Si, Ge, Sn) and superstructure Ce₁₂Ge_{9–x}Sb_{23+x} (x = 3.8 ± 0.1), J. Solid State Chem. 182 (2009) 645–656.
- [21] R.W. Olesinki, G.J. Abbaschian, The Ge-Sn system, Bull. Alloy Phase Diagrams 5 (1984) 265-271.

- [22] Y. Feutelais, B. Legendre, S.G. Fries, Thermodynamic evaluation of the system germanium-tin, CALPHAD 20 (1996) 109–123.
- [23] J. Romanowska, Experimental study on the thermodynamics of the Cu–Sb–Sn liquid alloys, CALPHAD 33 (2009) 723–725.
- [24] D. Manasijevic, J. Vrestal, D. Minic, A. Kroupa, D. Zivkovic, Z. Zivkovic, Phase equilibria and thermodynamics of the Bi–Sb–Sn ternary system, J. Alloys Compd. 438 (2007) 150–157.
- [26] A. Kroupa, J. Vízdal, The thermodynamic database for the development of modern lead-free solders, Defect Diffusion Forum 263 (2007) 99–104.
- [27] V. Vassiliev, Y. Feutelais, M. Sghaier, B. Legendre, Thermodynamic investigation in In–Sb, Sb–Sn and In–Sb–Sn liquid systems, J. Alloys Compd. 314 (2001) 198–205.
- [28] Ya.A. Gubenko, M.B. Miller, Research of the sections of Ge-(Sn+2%Sb) and Ge-(Sn+5.5%Sb), Izv. Akad. Nauk SSSR Neorg. Mater. 6 (1970) 471-474 (in Russian).
- [29] G.M. Kuznetsov, A.S. Manin, V.D. Dubovitskii, N.K. Sannikova, V.S. Kashchenko, O.A. Vedenskaya, Nov. Teor. Tekhnol. Metall. Protsessov (1973) 86–94 (cited from Ref. [30]).
- [30] E. Dichi, A. Wojakowska, B. Legedre, Study of the ternary system germanium-antimony-tin: experimental phase diagram, J. Alloys Compd. 320 (2001) 218–223.
- [31] A.T. Dinsdale, SGTE Pure Elements (Unary) Database, Version 4.5, 2006.
- [32] O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem. 40 (1948) 345–348.
- [33] H.L. Lukas, S.G. Fries, Demonstration of the use of "BINGSS" with the Mg-Zn system as example, J. Phase Equilib. 13 (1992) 532-541.
- [34] B. Sundman, B. Jansson, J.O. Andersson, The Thermo-Calc databank system, CALPHAD 9 (1985) 153–190.
- [35] Y.M. Muggianu, M. Gambino, J.-P. Bros, Enthalpies of formation of liquid Bi-Ga-Sn tin alloys at 723 K-the analytical representation of the total and partial excess functions of mixing, J. Chim. Phys. 72 (1975) 83-88.